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Abstract:  In order to analyze Trotuş river bed deposits granulometry 21 sampling point were 
chosen, located at about 7 km each other. After field and lab analysis it was noticed that there 
is a general downstream reduction trend for clasts size, but only if we consider extreme 
sampling points (headwaters and outflow). Trotuş midcourse display a downstream 
coarsening phenomenon, influenced by tributaries and slope processes that deliver much 
coarser materials than the ones stacked within river bed deposits. 
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*  *  *  *  *  *  
 

INTRODUCTION 
The nature of river bed sediments, also bank sediments have an important influence on 

rivers’ morphological and hydro-dynamic characteristics. Also is involved in rivers’ solid 
flow formation and components. In this context, grain size analyses may bring significant 
information regarding solid flow, sediment sources, their behavior at river bed deposits fluvial 
processing, etc. That’s why reports and studies on river bed sediments size have a long 
tradition perhaps of their practical nature. First reports were linked of downstream fining 
(Leonardo da Vinci, 1504 - 1506; Guglielmini, 1697; Frisi, 1762) (Gomez et al., 2001). These 
reports and the next ones founded the law stated by Sternberg (1875) according which grain 
size decrease exponentially with the travel distance.  

Starting from this finding, many studies focused on this process of river bed particle 
size decrease known as downstream fining. Was considered that this phenomenon has as main 
cause one of the following processes: fine particle selective transport or selective sorting 
(Paola et al., 1992; Ferguson et al., 1996; Wilcock, 1997; Gasparini et al., 1999; Hoey and 
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Bluck, 1999; Montgomery et al., 1999); abrasion (Krumbein, 1941; Bradley, 1970; Schumm 
and Stevens, 1973; Parker, 1991a, 1991b, 1991c; Kodama, 1994; Malarz, 2005); in situ clast 
weathering during storage (Bradley, 1970; Heller et al., 2001), and the spatial distribution of 
sources for resistant lithologies (Pizzuto, 1995). 

In certain cases a deviation from the normal trend of downstream fining called 
downstream coarsening was reported, and some factors were responsible for this: tributaries 
influence (Miller, 1958; Knighton, 1980; Rice, 1998, 1999); direct river channel inputs of 
materials by slope processes where floodplain is missing (Benda, 1990; Grant and Swanson, 
1995; Grimm et al., 1995; Lambert et al., 1996; Rice and Church, 1996; Church, 2002; 
Brummer and Montgomery, 2003; Attal and Lavé, 2006). Recent studies focused on the grain 
size and shape within river beds insist on relationships between source area characteristics and 
river bed sediments characteristics (Desloges, 1990; Mikoŝ, 1994; Ichim et al., 1998; Moussavi-
Harami et al., 2004; Farrow and Sklar, 2005; Malarz, 2005; Stanley et al., 2006; Attal and Lavé, 
2006; Lindsey et al., 2007; Rengers and Wohl, 2007; Rădoane at al., 2007, 2008; Mureşan, 
2009; Miao et al., 2010;  Pike et al., 2010; Venditti et al., 2010). 

 
STUDY AREA 
Trotuş drainage basin is located in central-eastern part of Eastern Carpathians and 

Moldavian Subcarpathians and has about 4,350 sqkm and a length of about 160 km (figure 1). 
Between headwaters and Siret confluence, the altitude difference is about 1,290 m (from 1,360 m 
altitude at headwaters to 70 m altitude at confluence). Trotuş River is of VIIIth order in Strahler 
classification. The catchment area lies on four distinct structural and lithological units: marginal 
syncline, carpathian flysch, pericarpathian molasse and the platform. 

Petrographically, in the four litho-stratigraphical units dominate the following lithology: 40% 
clayey silty rocks; 35% sandstones of different types; 18% quaternary deposits (gravels, sands, 
loams, clays); 5% crystaline schysts, limestones and dolomites; 2% menilites, disodiles etc. 

Average annual rainwater spans from 722 mm / yr in Trotuş Valley and almost 1,000 
mm/yr in higher mountains. These values drop down about 100 mm/yr in central part of 
Dărmăneşti Depression and towards the subcarpathians limit. Average annual discharge for 
Trotuş River, recorded at Vrânceni hydrometric station, is of 33 3/s while maximum was of 
3,720 m3/s, recorded in 29th of July 1991. 

 

 
Figure 1. Study area location  
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MATERIALS AND METHODS 
In this study was used volumetric sampling for river channel sediments that uses sampling 

for surface layers or pavement layer and subsurface layer or subpavement layer (Mosley and 
Tindale, 1985; Church et al., 1987; Ichim et al., 1992) (figure 2). This sampling method consists in 
drawing of three sampling categories: surface sample (from the layer called hydraulic layer or 
pavement of which thickness is equal with the diameter of the largest clast); subsurface sample (or 
subpavement - material located under hydraulic layer); a global sample (obtained by summing up 
the previous sampling categories). 

 

 
Figure 2. The illustration of the arrangement mode of the bed deposits 

 
After setting up the sampling method and sampling points (21 channel sections at a distance 

of 7 km of each other) (figure 3) topometric measurements were made, for each sampling point, to 
precisely assess the slope of the river channel and floodplain. Then, using the method proposed by 
Mosley and Tindale (1985), that states that the weight of the largest clast from sampled area is 5% 
from total weight of the sample, the clast with the largest diameter was identified. This was 
weighted to know the quantity of the sampled probe area. One square meter area was chosen as 
being representative for the entire section, out of which were collected surface and subsurface 
gravel. Some of granulometric fractions were sieved directly in the field using a set of sieves with 
holes having diameters according to the Wentworth scale. Sieving holes were of 64 mm (-6 phi), 
32 mm (-5 phi), 16 mm (-4 phi), 8 mm (-3 phi). The clasts with diameters between 128 - 256 mm 
were measured and weighted using a special calliper. For the ones larger than 256 mm, more 
difficult to be weighted in the field, a diameter-weight scale conversion was used (Church et al., 
1987; Ichim et al., 1992) built on the basis of the river clasts that were  investigated by evaluating 
the weight of the biggest clasts on the basis of the B axis.  

 

 
Figure 3. Sediment sample point distribution 

 
After all the sampled material was weighted, from each class (piles of gravel were made on 

each class) sample clasts were taken from each class. It was randomly picked 100 clasts from 
classes of 16 - 32 mm and 32 - 64 mm for morphometrical and petrographical lab analysis. For the 
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material smaller than 8 mm, sieving was continued in the lab using sieves of smaller diameter (6; 
5; 2; 1; 0.5; 0.2; 0.1 mm). From the obtained results there were made assessments on differences 
from pavement and subpavement, on median diameter of river bed deposits, on the percentage of 
each granulometric fractions, clasts morphometry, lithology etc. Global samples (by summing 
pavement and subpavement samples) were separated in 14 granulometric classes, at 1 phi interval, 
on five dimensional steps, according with Wentworth scale (Church et al., 1987), as follows: a) silt 
+ clay (< 4 phi or 0.063 mm); b) sand  (between 4 phi or 0.063 mm and - 1 phi or 2 mm); c) 
gravel  (between - 1 phi or 2 mm and - 6 phi or 64 mm); d) cobble  (between - 6 phi or 64 mm and 
- 8 phi or 256 mm); e) boulder  (over - 8 phi or 256 mm). 
 

RESULTS AND DISCUSSION 
MEDIAN DIAMETER OF BED MATERIAL  
Regarding median diameter of Trotus River bed particles was noticed a general tendency of 

grain size reduction between the extreme two sampling points (from 38 mm at FăgeŃel, located  at 
7.1 km from headwaters, to 27 mm at Burcioaia, at 160 km distance from headwaters). Out of this 
general tendency, among main confluences or where Trotus valley becomes narrower, positive and 
negative deviations were recorded. Second polynomial function fitted at best general variation 
tendency for median diameter that helped to separate four sectors (figure 4). Therefore, upper 
course (downstream confluence with Valea Rece) average median diameter is around 62 mm, then 
down to Ciobănuş confluence to be around 92 mm. A slight reduction was reported downstream 
Ciobănuş confluence, but not of great importance for general features of river bed deposits from 
this short section between Ghimeş and Asău. Median diameter grow tendency in midcourse reach 
a maximum downstream Asău, after which a reduction is reported within Comăneşti Depression. 
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Figure 4. Downstream variation in the median diameter of the bed material 

 
A second maximum is reported in the exit sector from Depression and entrance in 

subcarpathian area. Downstream Perchiu section median diameter variation records a constant 
reduction except a small increase after Tazlău confluence. Concluding, three sectors were separated 
that have the lowest median diameter (FăgeŃel - Valea Rece; inside Comăneşti Depression; lower 
course downstream Tazlău confluence) and another one in mid course, in which D50 values are, in 
average, above 90 mm. These high values for median diameter may be caused by sediments inputs 
from the short tributaries and high longitudinal slopes that deliver coarse material in Trotuş channel, 
on one hand, and slope feeding, on the other hand, as this sector is located in an area where is a 
valley narrowing  at the entrance and exit from Comăneşti Depression. In this narrow areas slopes 
have an important role in feeding the river channel with coarse materials. 

 
SURFACE BED MATERIAL GRANULOMETRIC SPECTRUM 
This has a variation tendency that, in general, is close to perfect, with a downstream 

increase share for small gravel size, where boulders and cobbles are replaced by gravel. It cannot 
be said that is an ideal distribution, as the competition is just between cobbles and gravels. 
Usually, in river bed deposits classes of grain size particles becomes smaller and their share 
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increase exponentially downstream. In this particular case grains from silt, clay and loam classes 
do not record any increase in share, on the contrary, their share display a reduction. This anomaly 
is present for certain clasts dimension in river bed deposits. For Trotuş River, boulder and cobble 
clasts are not specific, in particular, for upper course, but for midcourse sectors (figure 5). 
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Figure 5. Downstream variation in the grain size distribution of the surface channel deposits 
 

Cobbles (64 - 256 mm) is the granulometric class with the largest share within pavement. In 
certain sampling sections (especially in the midcourse) this class share is about or over 80% (Valea 
Rece, Palanca, Beleghet, Ciobănuş, Asău, Păgubeni, Târgu Trotuş). As in the case of median 
diameter, the function that better adjusts variation tendency for cobbles along longitudinal profile 
is the polynomial one, that identifies almost the same sectors, but with a small value for Comăneşti 
Depression. Cobble class has a constant increase after FăgeŃel sampling point (46.67%) until 
Trotuş entrance in Depression (Asău - 89.44%) and after a decrease of about 15% at Comăneşti, a 
new sharp increase is reported downstream Uz confluence (82.1%). In subcarpathian and plateau 
areas cobble class loses its significant chare, but a significant anlomaly is recorded downstream 
Trotuş confluence with Oituz, Caşin and Tazlău (figure 6). 
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Figure 6. Cobble variation share within pavement along Trotuş River 
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Figure 7. Gravel variation share within pavement along Trotuş River 
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Gravel class (2 - 64 mm) within pavement displays an inverse relation with cobble 
class along longitudinal profile. In the upper course has about 50% then decreases slowly 
downward to Asău (2.58%) and Mosoreni (5.66%). Outside mountain area, correlated with 
cobble share decrease, there is a constant increase for gravel clasts with a maximum value of 
84.41% at Adjud (figure 7).  
 Blocks class (over 256 mm) are specific only to pavement in Trotuş midcourse, where the 
valley has many narrow sectors and slope materials feed directly the river channel. 
 Sand class (2 - 0.063 mm) has a small share of only 4% in Comăneşti Depression, upstream 
Uz confluence, which is explained  by river slope reduction that allow „graded”  gravel formation. 
 
  SUBPAVEMENT DEPOSITS GRANULOMETRIC SPECTRUM 
  This is characterized by gravel (2 - 64 mm) and sands (2 - 0.063 mm) dominance. In the 
sampling sections located downstream Tazlău confluence, these two classes can hold over 90% 
from river bed deposits granulometric spectrum (figure 8). Out of mountain area Trotuş has no 
important tributaries that can significantly influence river bed deposits granulometry. Also 
proximity slopes to river channel and river banks deliver only fine materials and the decrease of 
river slope determines a grain sorting that trigger downstream fining. Of course, in the river 
midcourse gravel and sand share decrease on cobble favour (50% at Ghimeş, 52.6% at 
Brusturoasa, 70% at Asău, 50% at Mosoreni and Târgu Trotuş). In this sector, tributaries and 
slopes constantly feed Trotuş river bed with much coarser materials that in most cases cannot be 
transported and were stocked and has undergone in situ processing. 
 From figures 8 and 9 it can be said that, finally, for sub-pavement deposits it can be 
reported an ideal distribution, which is disturbed in river midcourse, like all other river bed 
deposits qualitative characteristics. Second polynomial functions describe at best variation 
tendencies for gravel and cobble share within pavement deposits (i.e. certain gradual 
„vanishing”  for clasts with larger size).  
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Figure 8. Subpavement granulometric spectrum 
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Figure 9.  Cobble (64 - 256 mm) and gravel (2 - 64 mm) variation share within subpavement deposits,  

along Trotuş River 
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RIVER BED DEPOSITS GLOBAL GRANULOMETRIC SPECTRUM  
River bed deposits global granulometric spectrum reflects both pavement and sub-

pavement characteristics. The dominance of cobbles and boulders in pavement materials gibes 
Trotuş deposits a coarse facies, from headwaters to outflow, while sub-pavement sands make some 
„enhancement” of materials sizes, as fine materials share are increasing downstream (figure 10).  
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Figure 10. Trotuş River bed deposits global granulometric spectrum 
 
In spite of this, sands barely succeed to have over 10% in several sampling sections, while silt 

and clay have less than 1%. In this way, cobbles and gravels, from most sampling points, hold 
toghether over 90% from granulometric spectrum, which allow us to put Trotuş River in the category 
of gravel bed river. 

 
TROTUŞ RIVER BANKS SEDIMENTS GRANULOMETRY  
River banks sediments (sampled in 17 out of 21 cross sections for floodplain 

geomorphological complex) have median diameter between 0.04 - 0.35 mm (figure 11).  
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Figure 11. Trotuş River banks deposits median diameter variation 
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Figure 12. Trotuş River banks deposits granulometric variation 



Downstream Variation in Particle Size: A Case Study of the Trotuş River … 
 

229

Gravels are reported sporadically, as lenses that indicate either former river channels, or 
some influences made of some tributaries (Ciobănuş, Slănic).  

Along river longitudinal profile, confluences and local petrographic facies disturb the 
tendency of granulometric size decrease. Most important influences are reported at Ciobănuş and 
Slănic confluences. 

Trotuş River banks are, in general, sandy (in most cases over 70%), but between 
confluences is was reported an increase of silt and clay share (40% at Beleghet and Perchiu, 32% 
at Burcioaia, 30% at Comăneşti) (figure 12). 

 
MODALITY OF THE GRAIN SIZE DISTRIBUTIONS 
Granulometric distribution can be analysed by graphics interpretation for each sampling 

point along the river. In this way, from graphics shape it can be assessed if granulometric 
distribution is unimodal, which means that the material is quasi-unifom regarding particle size (in 
this case can be composed only of gravel cobble blocks, or only by sand and other fine sediments) 
or bimodal (and in some cases poly-modal) when are present gravel and sand deposits. Linked 
with composition share of the two most important classes to form mixes it is considered that the 
ideal mix would be 70% gravel and 30% sand, which is identical with the ones proposed by 
Ibbeken (1983) and Ibbeken and Schleyer (1991) for river bed deposits in their lower course for 
Calabrian rivers. Rădoane et al. (2001, 2006, 2008) indicate that, for the Romanian studied rivers, 
bimodality is determined by under 25% for 1 - 20 mm fraction, which is considered a fundamental 
element in river deposits distribution formation. 

For Trotuş River the modality of the grain size distribution was analysed separately for 
surface, subsurface and for the global sample. Based on individual share for cobbles, gravels, 
sands and silty-clayey particles that compose river bed deposits, histogram distributions were 
calculated. Based on these graphs was settled that the distribution is unimodal (was noted as 
modality 1) or bimodal (modality 2). From figure 13 histograms one can notice that: 
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Figure 13. Histogams of the grain size distribution along the Trotus River, swowing contribution of the 

subsurface sediments to bimodality: A. surface bed sample; B. subsurface sample; C. global sample. 
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 - bimodality has a very slight increase downstream Trotuş River and has a correlation 
coefficient of 0.222. For the rivers of which river bed deposits are made of materials with very  
different sizes, was reported, as a general rule, that for the upper course is specific a unimodal 
distribution, and in lower course a bimodal distribution (Ibbeken şi Schleyer, 1991; Kodama, 
1992; Sambrook Smith, 1996; Ichim et al., 1998; Rădoane et al., 2001, 2006, 2008). Bimodal 
distribution is reported in only one section (CăiuŃi) and only for sub-pavement and global sample; 
 - bimodality has an inverse relationship with Trotuş River channel slope. As the river slope 
reduces itself (within Comăneşti Depression and after Trotuş exits from mountain area) a weak 
bimodal distribution was reported; 
 - bimodality has an indirect relationship with median diameter variation for river bed 
deposits. For Trotuş River bimodality is manifest together with D50 decrease, explained by share 
reduction for cobble and gravel and increased share for fine sediments (sand and silt); 
 - bimodality is in direct relationship with the percentage of sand, gravel and 1 - 20 mm fraction; 
 - bimodality of granulometric distribution is different from the pavement and sub-pavement 
samples. Trotuş granulometric distribution for pavement deposits is exclusively unimodal. Sub-
pavement samples, along with an increase of fine sediments display a slight bimodal tendency. 
 

CONCLUSIONS 
The obtained results have the same consistency with the ones reported by other authors that 

studied different Romanian rivers (Ichim et al., 1998, Maria Rădoane et al., 2001, 2006, 2008). 
Their main conclusion, and verified on Trotuş River, was that large geological and 
geomorphological units that east Carpathian rivers cross them diagonally has as a result certain 
granulometric clustering along river drainage channel. 

This phenomenon was well emphasized by using a triangulated diagram which display a 
clear discrimination among cobble (> -6 phi), gravel (-6 phi -1 phi), sand (-1 phi -4 phi), silt and 
clay (< 4 phi). From figure 14 some conclusions can be drawn: 

 

 
Figure 14. The change of Trotuş granulometric spectrum in relationship with geomorphological units 

 
 - carpathian area groups the sampling sections in which cobbles and boulders have a large 
share in river bed sediments composition of about 60 - 80%. The cluster from Carpathian area is 
well shaped in the right corner; 
 - subcarpathian area is composed by sections where dominates gravel, and the cluster is 
located in the upper center part of the diagram. 
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 River bed materials orting was done in a long competition process between sorting and 
sediment abrasion during fluvial transport. Fluvial processing rock resistance, river channel slope 
and the strength of fluvial transport individualized each river (Ichim et al., 1998, Maria Rădoane et 
al., 2001, 2006, 2008).  
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